Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(E)-4-Methoxybenzaldehyde O-(N-phenylcarbamoyl)oxime

Maciej Kubicki

Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
Correspondence e-mail: mkubicki@amu.edu.pl

Received 15 April 2005
Accepted 10 May 2005
Online 11 June 2005
There are two molecules, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, in the asymmetric unit of the title compound, the first structurally characterized carbamoyl benzaldehyde oxime derivative; these molecules do not differ significantly. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect molecules into infinite $\ldots A B A B \ldots$ ribbons along the [100] direction.

Comment

There are some 35 structures of benzaldehyde oxime derivatives in the Cambridge Structural Database (CSD; Version of February 2005; Allen, 2002); however, there are no examples of carbamoyl derivatives. Moreover, there is only one structure, namely [2-methyl-2-(methylthio)propionaldehyde O-methylcarbamoyl]oxime (Takusagawa \& Jacobson, 1977), containing the $\mathrm{NH}-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{N}=\mathrm{C}$ group, and that structure is relatively poorly determined ($R=9.3 \%$, no H atoms). This lack of structures is even more surprising taking into account that chemical literature dealing with O-phenylcarbamoylated aldoximes is extensive, for example, acylation of aldoximes (Hauser et al., 1935; Rainsford \& Hauser, 1939) and conversion of aldehydes into nitriles (Coşkun \& Arikan, 1999). These compounds also have biological activity; for instance, the analgesic anidoxime has the structure of phenylcarbamoylated oxime (Grainger et al., 1977; Watzman \& Buckley, 1980) and aldicarb, [2-methyl-2-(methylthio)propionaldehyde O-methylcarbamoyl]oxime, is used as a pesticide.

(I)

It therefore seemed interesting to determine the crystal structure of one of the most representative members of this family, the title compound, (I). The asymmetric unit contains two molecules (A and B). Normal probability plot analyses (Abrahams \& Keve, 1971; International Tables for X-ray

Crystallography, 1974, Vol. IV, p. 293) for both bond lengths and angles show that the differences between the symmetryindependent molecules (Fig. 1) are of a statistical nature; the squares of the correlation factors are 0.96 and 0.99 for bond lengths and angles, respectively.

The overall conformation of the molecule of (I) can be described by the dihedral angles between four approximately planar fragments, viz. the phenyl ring (p 1), the $\mathrm{N}(\mathrm{H}) \mathrm{COO}$ group (p2), the $\mathrm{CC}(\mathrm{H})=\mathrm{NO}$ fragment (p3) and the methoxysubstituted phenyl ring (p4). The maximum deviations are no larger than 0.007 (2) \AA for the rings and 0.032 (4) \AA for fragments p 2 and p 3 . The dihedral angle between the terminal phenyl ring planes, which might serve as a measure of the overall twist of the molecules, is $60.9(1)^{\circ}$ in molecule A and $69.6(1)^{\circ}$ in molecule B. There are some minor differences in the conformations of the two molecules (Fig. 1 and Table 1). These differences are deserved in the values of the abovementioned dihedral angles: the p1/p2 angle is $29.7(1)^{\circ}$ in molecule A and 29.2 (1) ${ }^{\circ}$ in B, the p2/p3 angle is 21.0 (2) ${ }^{\circ}$ in A and $30.6(2)^{\circ}$ in B, and the p3/p4 angles in molecules A and B are $10.3(2)$ and $9.9(2)^{\circ}$, respectively.

The bond lengths and angles are typical, with a double $\mathrm{C} 2=\mathrm{N} 2$ bond of 1.278 (3) \AA, and the typical asymmetry of $\mathrm{C}-\mathrm{N}$ bonds around atom N 1 ; for $825 \mathrm{Ph}-\mathrm{NH}-\mathrm{C}(=\mathrm{O})-R$ fragments found in the CSD (only organic compounds, no fused rings, no errors, $R<0.075$), the mean value of the $\mathrm{C}_{\text {phenyl }}-\mathrm{N}$ bond length is 1.414 (13) \AA and that of the $\mathrm{N}-$ $\mathrm{C}(=\mathrm{O})$ bond length is 1.352 (15) \AA.

In both symmetry-independent molecules in the title compound, the oxime group is in a $\operatorname{syn}(E)$ conformation (e.g. Ciajolo et al., 1981), as can be seen from the values of the $\mathrm{O} 12-\mathrm{N} 2=\mathrm{C} 2-\mathrm{C} 21$ torsion angles $[-175.5(2)$ and $\left.-177.8(2)^{\circ}\right]$. The conformation along the $\mathrm{N}-\mathrm{O}$ bond is anti; the values of the $\mathrm{C} 1-\mathrm{O} 12-\mathrm{N} 2=\mathrm{C} 2$ torsion angles are close to 180°. It might be noted that a different conformation, syn $\left(\mathrm{C}=\mathrm{N}-\mathrm{O}-\mathrm{C}\right.$ torsion angle close to $\left.0^{\circ}\right)$, is observed exclusively for compounds in which the oxime fragment is involved in a cyclic environment. For 281 fragments with an acyclic $\mathrm{C}=\mathrm{N}-\mathrm{O}-Z$ (where Z is not hydrogen) group, there are only four hits with a $\mathrm{C}=\mathrm{N}-\mathrm{O}-Z$ torsion angle smaller than 130°, viz. l-canavanine (Boyar \& Marsh, 1982), D-gluconohydroximo-1.5-lactone $1-N-2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-pentabenzoate (Beer \& Vasella, 1985), 4-(N-methoxymethylimino)-2,2-diphenyl-1,3-dioxa-2-borata-1,2,3,4-tetrahydronaphthalene (Kliegel et al., 1989) and (Z)-2-(benzoyl-aci-nitro)-2-phenyl-

Figure 1
A comparison of the conformation of two symmetry-independent molecules. The terminal phenyl rings were fitted by the least-squares procedure (Siemens, 1989).

Figure 2
The hydrogen-bonded dimer of molecules A and B, with the atomlabelling scheme. Anisotropic displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Primes denote symmetry code $(1+x, y, z)$.
acetonitrile (Powell et al., 1996). The smallest value of this angle is 97°. Almost 90% of these compounds have an absolute value of the $\mathrm{C}=\mathrm{N}-\mathrm{O}-Z$ torsion angle larger than 160°.

In the crystal structure, the molecules are arranged in infinite $\ldots A B A B \ldots$ ribbons along the [100] direction by means of strong and directional $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1). Using graph-set notation (Etter et al., 1990; Bernstein et al., 1995) at the first order there are two dimers $(D D)$, while the most informative is the second-rank graph-set $C_{2}^{2}(8)$; additional weak $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts and intramolecular $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 11$ hydrogen bonds may play stabilizing roles in the creation of the pattern.

Experimental

The method used for the preparation of (I) has been described elsewhere (Mohamed, 2004). The crystals used for data collection were grown from a methanol solution by slow evaporation.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=270.28$
Triclinic, $P \overline{1}$
$a=8.8037(8) \AA$
$b=12.1484(15) \AA$
$c=12.9823(17) \AA$
$\alpha=75.275(11)^{\circ}$
$\beta=81.075(9)^{\circ}$
$\gamma=80.746(9)^{\circ}$
$V=1315.9(3) \AA^{\circ}$

Data collection

Kuma KM-4 CCD four-circle

 diffractometer
ω scans

10887 measured reflections
5124 independent reflections
2749 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.128$
$S=0.94$
5124 reflections
456 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0517 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0032(9)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 11 B$	$0.84(3)$	$2.10(3)$	$2.920(3)$	$165(3)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 11 A^{\mathrm{i}}$	$0.84(3)$	$2.16(3)$	$2.993(3)$	$178(3)$
$\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 11 B$	$1.08(3)$	$2.27(2)$	$2.900(3)$	$115(2)$
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 11 A$	$0.99(2)$	$2.41(2)$	$2.983(3)$	$116(2)$

Symmetry code: (i) $x+1, y, z$.

$$
\mathrm{C}-\mathrm{H} \text { distances are in the range } 0.90(2)-1.08 \text { (3) } \AA .
$$

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Sterochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

The author thanks Dr M. A. A. Mohamed for providing the compound.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF1002). Services for accessing these data are described at the back of the journal.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Beer, D. \& Vasella, A. (1985). Helv. Chim. Acta, 68, 2254-2274.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Boyar, A. \& Marsh, R. E. (1982). J. Am. Chem. Soc. 104, 1995-1998.
Ciajolo, M. R., Lelj, F., Tancredi, T. \& Temussi, P. A. (1981). Acta Cryst. B37, 1130-1131.
Coşkun, N. \& Arikan, N. (1999). Tetrahedron, 55, 11943-11948.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Grainger, D. J., Gawley, T. H. \& Dundee, J. W. (1977). Br. J. Anaesth. 49, 257258.

Hauser, C. R., Jordan, E. \& O'Conner, R. (1935). J. Am. Chem. Soc. 57, 24562458.

Kliegel, W., Tajerbashi, M., Rettig, S. J. \& Trotter, J. (1989). Can. J. Chem. 67, 1636-1643.
Mohamed, M. A. A. (2004). PhD thesis, The Silesian University of Technology, Gliwice, Poland.
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Versions 169. Oxford Diffraction Poland Sp., Wrocław, Poland.
Powell, D. R., Hanson, P. E. \& Gellman, S. H. (1996). Acta Cryst. C52, 29452946.

Rainsford, A. E. \& Hauser, C. R. (1939). J. Am. Chem. Soc. 61, 480-492. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Takusagawa, F. \& Jacobson, R. A. (1977). J. Agric. Food Chem. 25, 333-336.
Watzman, N. \& Buckley, J. P. (1980). J. Pharm. Sci. 69, 225-226.

